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We characterize the dynamical states of a piezoelectric micrcoelectromechanical system (MEMS)
using several numerical quantifiers including the maximum Lyapunov exponent, the Poincaré
Surface of Section and a chaos detection method called the Smaller Alignment Index (SALI).
The analysis makes use of the MEMS Hamiltonian. We start our study by considering the case
of a conservative piezoelectric MEMS model and describe the behavior of some representative
phase space orbits of the system. We show that the dynamics of the piezoelectric MEMS becomes
considerably more complex as the natural frequency of the system’s mechanical part decreases.
This refers to the reduction of the stiffness of the piezoelectric transducer. Then, taking into
account the effects of damping and time-dependent forces on the piezoelectric MEMS, we derive
the corresponding nonautonomous Hamiltonian and investigate its dynamical behavior. We find
that the nonconservative system exhibits a rich dynamics, which is strongly influenced by the
values of the parameters that govern the piezoelectric MEMS energy gain and loss. Our results
provide further evidences of the ability of the SALI to efficiently characterize the chaoticity of
dynamical systems.
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1. Introduction

In many cases the dynamical behavior of physical
systems can be modeled by Hamiltonian systems.
Over the years the Hamiltonian formulation has
been successfully applied in numerous areas of
physics such as statistical mechanics [Brody et al.,
2008], classical physics [Rohrlich, 1979], quantum
mechanics [Arminjon, 2015] and many other fields
[Bountis & Skokos, 2012]. In general, Hamiltonian
systems can be divided in two broad categories: con-
servative and nonconservative systems. A system is
said to be conservative when the value of the cor-
responding Hamiltonian function (which is usually
referred to as the system’s total energy) remains
constant throughout time. As a typical example of
this kind, let us mention the well-known Hénon–
Heiles system, which describes, at some approxima-
tion, the motion of stars around a galactic center
[Hénon & Heiles, 1964]. Nonconservative Hamiltoni-
ans can describe systems in the presence of external
forces depending on time (time-dependent Hamil-
tonian systems) and/or friction forces (dissipative
Hamiltonian systems) provoking the change of the
systems’ total energy.

In this study, we focus our attention on the
dynamics of piezoelectric microelectromechanical
systems (MEMSs), whose behavior can be described
by conservative or nonconservative Hamiltonians
depending on the assumptions made for the MEMSs
performance. In MEMSs, the piezoelectric effect
is used in one of the following ways: applying a
mechanical stress to piezoelectric materials pro-
duces an electrical charge; or conversely, an applied
electrical voltage produces a mechanical strain or
motion in a piezoelectric material [Crawley & Luis,
1987; Schaffner & Jungnickel, 1994; Wendell, 1983].
The second situation is known as the inverse piezo-
electric effect and is the main topic of the present
work. Since its discovery in 1880 [Curie & Curie,
1880, 1881], the piezoelectric effect has evolved
from a laboratory curiosity to a mature technology.
Piezoelectric sensors and actuators are common in
sonar systems, proximity sensors, pressure sensors,
ink jet printers, speakers, microphones and many
other applications [Kuntzman et al., 2013; Phillips
et al., 2014; Dakua & Afzulpurkar, 2013; Ueber-
schlag, 2001; Risio & Yan, 2007]. Investigating the
dynamical behavior of piezoelectric MEMSs, as in
this work, will assist us to better understand the
functioning of devices using piezoelectric actuators.

The study of the dynamical properties of
Hamiltonian systems constitutes an important
research topic in nonlinear physics, because such
systems can exhibit very complex and quite inter-
esting behaviors. Several theoretical and numer-
ical tools have been developed and applied by
many researchers in order to investigate the chaotic
dynamics of Hamiltonian systems. Let us briefly
present some of them. The numerical construc-
tion of the so-called Poincaré Surface of Section
(PSS) has been used to reveal the chaotic prop-
erties of mainly nonintegrable two degree of free-
dom (2dof) Hamiltonian systems, as its extension to
higher dimensional models can become problematic
(see for example, Sec. 1.2 of [Lichtenberg & Lieber-
man, 1992]). The computation of the maximum
Lyapunov exponent (mLE) [Benettin et al., 1980a,
1980b; Skokos, 2010] is the most commonly used
method to characterize chaos. More recently, several
other chaos detection methods have been proposed
in the literature, such as the Fast Lyapunov Indi-
cator (FLI) [Froeschlé & Lega, 2000, 2001] and its
variants [Barrio, 2005, 2006], the Mean Exponential
Growth of Nearby Orbits (MEGNO) [Cincotta &
Simó, 2000; Cincotta et al., 2003], the Relative Lya-
punov Indicator (RLI) [Sándor et al., 2000; Sándor
et al., 2004], as well as the Smaller Alignment
Index (SALI) [Skokos, 2001; Skokos et al., 2003,
2004] and its extension the Generalized Alignment
Index (GALI) [Skokos et al., 2007, 2008; Manos
et al., 2012; Skokos & Manos, 2016], to name a few.
Review presentations of these, as well as of some
other commonly used chaos detection techniques,
can be found in [Skokos et al., 2016]. The SALI
proved to be a simple, fast and efficient tool for dis-
tinguishing between ordered and chaotic motions,
and has already been successfully applied to sev-
eral models [Bountis & Skokos, 2006; Antonopou-
los et al., 2006; Manos et al., 2008] (see also the
review paper of Skokos and Manos [2016] and ref-
erences therein). The performance of the SALI for
dissipative or time-dependent systems has also been
studied [He et al., 2003; Huang & Wu, 2011, 2012;
Huang & Zhou, 2013; Manos et al., 2013; Huang &
Cao, 2014]. In these works it has been found that
the SALI behavior is similar to the one shown in
the case of conservative systems, and that the index
remains an efficient and accurate tool for detecting
chaos in nonconservative systems.

In the present paper, we use the PSS, the mLE
and the SALI techniques to investigate the chaotic
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dynamics of a time-dependent piezoelectric MEMS.
In [Taffoti Yolong & Woafo, 2009] this system was
studied in the framework of the Lagrangian for-
malism, but only its chaotic state was analyzed.
Here, a Hamiltonian formulation of the problem
is derived taking into account dissipation (friction)
and time-dependent forces. Moreover, the analy-
sis of the system’s global dynamics is discussed in
detail. The paper is organized as follows: Section 2
deals with the dynamics of the conservative version
of the piezoelectric MEMS. Section 3 is devoted to
the case of the time-dependent form of the system,
while in Sec. 4 we summarize our results and present
the conclusions of our work.

2. The Conservative Hamiltonian
Piezoelectric MEMS Model

2.1. Model and Hamiltonian
function

A MEMS is a physical system whose dimensions
are of the order of the micrometer. It is made
of a mechanical part (flexible or rigid structures)
and an electrical part. The model of the piezoelec-
tric MEMS considered in this study is presented
in Fig. 1(a). Following Taffoti Yolong and Woafo
[2009], we model one piezoelectric MEMS element
as a stack of n disks of thickness h and cross-section

A, assuming that all the electrical and mechanical
quantities are uniformly distributed in the linear
transducer. This model can be found in technolog-
ical devices where the inverse piezoelectric effect is
brought into place. When the piezoelectric element
is subjected to a voltage V it exhibits a displace-
ment Δ which is proportional to the input signal.
For this study, the piezoelectric transducer is con-
nected to a voltage source

E(τ) = Ee0 cos ω0τ, (1)

in series with a resistor R, an inductor L and a non-
linear capacitor [see Fig. 1(b)] whose charge-voltage
characteristic is given by:

VC0 =
q

C0l
+ βe0q

3,

where C0l and βe0 are respectively the linear value
of the capacitor C0 and the nonlinear coefficient.
The piezo structure is also equipped at one end of
a spring with nonlinear stiffness K1 as presented in
Fig. 1(b).

The total extension of the piezosystem Δ can
be expressed as:

Δ = bz,

where b is a coefficient relating the end displacement
of the transducer to the global coordinate system z.
The total dissipation of the system which is the sum

(a) (b)

Fig. 1. (a) A stack of n disks of thickness h and cross-section A constituting one piezoelectric actuator. This piezoelectric
material is subjected to a total voltage V inducing the electric field E = V/h. The total force f resulting from the electric field
produces a total mechanical displacement of the structure Δ. l is the length of transducer. The doubled arrowed segments in
the middle of the discs indicate the polarization of the piezosystem. (b) The electrical circuit equipped with the piezoelectric
body in oscillation. The piezoelectric transducer is connected to a voltage source E, which varies in time τ , in series with a
resistor R, an inductor L and a capacitor C0. The structure has at its one end spring of stiffness K1 attached to a movable
mass M which can be displaced along the z direction.
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of the mechanical loss resulting from internal damp-
ing and the electrical loss due to the Joule’s effect
in the resistor R is given by the following function:

Λ =
1
2
λm0ż

2 +
1
2
Rq̇2, (2)

where λm0 is the damping coefficient. The used
piezoelectric actuator which is of lead zirconate-
titanate (PZT) type commonly achieves a relative
displacement of up to 0.2%. The values of the phys-
ical parameters of the piezoelectric transducer are
presented in Table 1.

The Lagrangian Γ of the piezoelectric MEMS is
[Taffoti Yolong & Woafo, 2009]:

Γ =
1
2
Mż2 +

1
2
Lq̇2 − 1

2

(
K0 +

Kab
2

1 − k2

)
z2

− 1
4
K1z

4 − 1
2

(
1

C0l
+

1
C(1 − k2)

)
q2

− 1
4
βe0q

4 +
nd33Kab

C(1 − k2)
qz, (3)

where q and z are variables respectively related to
the electrical charge and the mechanical displace-
ment which vary according to time τ . M is the mass

Table 1. Parameter values of the piezoelectric transducer.

Property Symbol Value and Unit

Number of disks n 1530
Thickness of one disk h 3μm
Total length of transducer l = nh 4.59 mm
Diameter of the transducer D 4mm

Piezoelectric constant d33 300 × 10−12 C/N
Stiffness for small stretching K0 6.67 N/m

Mechanical nonlinear K1 8.39 N/m3

coefficient related to
the stiffness

Density mass ρ 7600 kg/m3

Electromechanical coupling k 0.4
factor

Young modulus νE 50 × 109 Pa

Dielectric constant under εT 1.593 × 10−8 F/m
constant stress

Capacitance of the transducer C 100 μF
with no external load

Electrical nonlinear coefficient βe0 150 VC
related to the capacitor

Viscous damping coefficient λm0 0.0093 Ns/m
Voltage source amplitude Ee0 109.5 V
Resistance R 0.17 Ω
Inductance L 1 H
Linear value of capacitor C0 C0l 1F

of the structure, Ka = AνE/l is the stiffness with
short circuited electrodes.

We conduct some mathematical transforma-
tions of Eq. (3), as shown in Appendix A, and get
the following Hamiltonian function, which describes
the system’s dynamics in dimensionless variables:

H(pq, pz, q, z)

=
β1

300
p2

q +
γ2β1

300γ1
p2

z +
75
β1

q2 +
75
2

q4

+
75γ1ω

2
2

γ2β1
z2 +

75γ1β2

2γ2β1
z4 − 150γ1

β1
qz. (4)

Here q, z are the generalized coordinates and pq, pz

the generalized momenta of respectively the electri-
cal and mechanical parts of the system. In addition,
γ1 and γ2 are the electromechanical coupling coef-
ficients, β1 and β2 are the nonlinearity coefficients,
while ω2 is the natural frequency of the mechanical
part. The expressions of all these quantities are:

γ1 =
nd33Kab

LCω2
e(1 − k2)

, γ2 =
nd33Kab

MCω2
e(1 − k2)

,

β1 =
βe0

Lω2
e

, β2 =
K1

Mω2
e

,

ω2
2 =

1
Mω2

e

(
K0 +

Kab
2

1 − k2

)
,

with ω2
e =

1
L

(
1

C0l
+

1
C(1 − k2)

)
.

We note that Hamiltonian (4) is a 2dof
autonomous system (i.e. it does not explicitly
depend on the dimensionless time t), governed by
the following equations of motion:

q̇ =
∂H

∂pq
=

β1

150
pq,

ż =
∂H

∂pz
=

γ2β1

150γ1
pz,

ṗq = −∂H

∂q
= −150

β1
q − 150q3 +

150γ1

β1
,

ṗz = −∂H

∂z
= −150γ1ω

2
2

γ2β1
z − 150γ1β2

γ2β1
z3 +

150γ1

β1
q,

(5)

where dot (˙) denotes the time derivative.
In order to determine the regular or chaotic

nature of orbits by the computation of the mLE
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and/or the SALI, we need to follow the time evolu-
tion of small deviations from the considered orbits.
In other words, we need to consider in time a devi-
ation vector 	w(t) having as coordinates the small
variations δq, δz, δpq, δpz of variables q, z, pq, pz

respectively, i.e. 	w(t) = (δq(t), δz(t), δpq(t), δpz(t)).
The evolution of these deviations is governed by the
so-called variational equations of the system (see for
example [Skokos, 2010]). The variational equations
of the Hamiltonian (4) are as follows:

δ̇q =
β1

150
δpq,

δ̇z =
γ2β1

150γ1
δpz ,

δ̇pq = −
(

150
β1

+ 450q2

)
δq +

150γ1

β1
δz,

δ̇pz = −
(

150γ1ω
2
2

γ2β1
+

450γ1β2

γ2β1
z2

)
δz

+
150γ1

β1
δq.

(6)

We note that the variational equations (6) can-
not be solved independently from the equations of
motion (5) as they explicitly depend on variables
q and z. Thus, Eqs. (5) and (6) have to be solved
simultaneously and be treated as one large set of
differential equations. In our study, we numerically
solve this set by using the fourth-order Runge–
Kutta method with a time step 10−3.

2.2. Dynamics

Based on the analysis presented in [Taffoti Yolong &
Woafo, 2009], we set the values of the parameters
of Hamiltonian (4) to

β1 = 14.25, β2 = 13.91, γ1 = 0.21,

γ2 = 3.64 and ω2
2 = 3.75

for our investigation. In all our simulations the abso-
lute value of the relative energy error

Er = |[H(t) − H(0)]/H(0)|,
where H(t) and H(0) are the values of Hamilto-
nian (4) at times t = 0 and t > 0 respectively, which
remains always below 10−10. This clearly indicates
the very good accuracy of our computations.

In Fig. 2, we plot the system’s PSS for different
values of its mechanical natural frequency. The PSS

is obtained by plotting the z and pz coordinates of
the intersections of several orbits with the phase
subspace defined by q = 0 and pq > 0. A grid of
50×50 equally spaced initial conditions in the (z, pz)
plane is considered in each panel.

For ω2 = 4.5 [Fig. 2(a)], ω2 = 3.75 [Fig. 2(b)]
and ω2 = 1.5 [Fig. 2(c)] we see that the phase space
is mainly occupied by invariant curves, which cor-
respond to the intersections of two-dimensional tori
of quasiperiodic motion with the PSS, indicating
that the dynamics is predominately characterized
by regular motions.

For smaller values of the mechanical natu-
ral frequency (ω2 = 0.5 [Fig. 2(d)] and ω2 =
0.1 [Fig. 2(e)]), which correspond to the stiff-
ness decrease of the considered piezoelectric trans-
ducer, more complicated pictures are seen: regions
of regular motion, corresponding to what looks to
be smooth curves, coexist with scattered points
belonging to chaotic orbits.

Let us consider three representative orbits A,
B and C of that system having ω2 = 0.1 [Fig. 2(e)]
and a total energy H = 0.9 with the following initial
conditions

Orbit A (regular):

q = 0; z = −0.042; pz = 0.31,

Orbit B (chaotic):

q = 0; z = −0.34; pz = 0.0032,

Orbit C (regular):

q = 0; z = 0.3; pz = −0.68,

and investigate their dynamics by computing their
mLE and SALI. We note that the initial conditions
of these orbits are denoted respectively by red, blue
and green dots in Fig. 2(e).

The mLE, χ, is an asymptotic measure charac-
terizing the average rate of growth (or shrinking)
of small perturbations to the solutions of a dynam-
ical system and is computed as χ = limt→+∞ Λ(t),
where Λ(t) is the so-called finite time mLE

Λ(t) =
1
t

ln
( ‖	w(t)‖
‖	w(0)‖

)
. (7)

In (7) 	w(0) and 	w(t) are the deviation vectors from
the studied orbit at times t = 0 and t > 0 respec-
tively. It is known that χ > 0 denotes chaotic
motion, while χ = 0 indicates regular orbits [Benet-
tin et al., 1980a, 1980b; Skokos, 2010]. The value of
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(a) (b)

(c) (d)

(e)

Fig. 2. The PSS (z, pz) of the Hamiltonian model (4) for q = 0, pq > 0 and various values of the mechanical natural frequency:
(a) ω2 = 4.5, (b) ω2 = 3.75, (c) ω2 = 1.5, (d) ω2 = 0.5 and (e) ω2 = 0.1. In (e), the initial conditions of a regular orbit (A), a
chaotic one (B) and a regular orbit (C) are denoted respectively by red, blue and green color dots and indicated by arrows.

χ does not depend on the norm, ‖·‖, used in (7) and
the choice of the initial vector 	w(0). In our compu-
tations we used the common Euclidian norm.

In Fig. 3, we plot the time evolution of Λ(t)
for orbits A (red curve), B (blue curve) and C
(green curve). The regular nature of orbits A and

C is clearly seen from the results of Fig. 3 as their
finite time mLE tend to zero following a law ∝ t−1

as is expected for regular motion (see e.g. [Skokos,
2010] and references therein for more details). On
the other hand, the evolution of Λ(t) for orbit B
shows, after some transient phase, a clear tendency
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Fig. 3. Time evolution of the finite time mLE Λ(t) in log–
log scale, for the regular orbit A (red curve), the chaotic orbit
B (blue curve) and the regular orbit C (green curve), whose
initial conditions are shown in Fig. 2(e).

to stop decreasing and it seems to stabilize around
a positive value of Λ(t) ≈ 10−1.3. This behavior is
indicative of the orbit’s chaotic nature.

Let us now use the SALI method to characterize
the dynamical nature of the orbits A, B and C. For
the computation of the SALI we have to follow the
time evolution of two initially different deviation
vectors 	w1(t) = (δq1, δz1, δpq1, δpz1) and 	w2(t) =
(δq2, δz2, δpq2, δpz2). Then the SALI at a time t > 0
is computed as the length of the smallest diago-
nal of the parallelogram formed by the unit vectors
ŵ1(t) = 	w1(t)/‖	w1(t)‖ and ŵ2(t) = 	w2(t)/‖	w2(t)‖
as:

SALI(t) = min{‖ŵ1(t) + ŵ2(t)‖, ‖ŵ1(t) − ŵ2(t)‖}.
(8)

For chaotic orbits, the SALI exhibits a fast
decrease to zero (in practice, it reaches quite fast
very small values around the computer accuracy,
i.e. SALI ≈ 10−16) because the two deviation vec-
tors tend to become aligned to the direction associ-
ated to the mLE, while for regular orbits the index
fluctuates around a positive value (for more details
see [Skokos & Manos, 2016] and references therein).
These two behaviors are clearly seen in Fig. 4 for
the regular orbits A (red curve) and C (green curve)
and the chaotic orbit B (blue curve). An important
remark here is that the use of the SALI identifies
chaos faster than the computation of the mLE.

A global study of the dynamics of Hamiltonian
(4) can be performed by following the approach
implemented in [Antonopoulos et al., 2005; Boreux

et al., 2012a; Boreux et al., 2012b; Kyriakopoulos
et al., 2014]. In order to illustrate this approach let
us consider a dense grid of initial conditions on the
system’s PSS for ω2 = 0.1 [Fig. 2(e)]. Each initial
condition is integrated up to t = 3000 time units
and the corresponding point on the PSS is colored
according to the value of log10 SALI at the end of
the integration. In this way Fig. 5(a) is created,
where regions of chaotic behavior corresponding to
small values of SALI (colored in black and red), are
clearly distinguished from regions with large SALI
values where regular motion occurs (colored in pink
and yellow). We note that white regions in Fig. 5(a)
correspond to not-permitted initial conditions.

Setting as a criterion for characterizing an orbit
as chaotic the condition SALI ≤ 10−8 at the final
integration time (which has been used in previous
studies [Antonopoulos et al., 2005; Boreux et al.,
2012a; Boreux et al., 2012b; Kyriakopoulos et al.,
2014]) we can estimate the percentage P of chaotic
orbits for various values of the system’s mechanical
natural frequency ω2. The outcome of this analysis
is seen in Fig. 5(b). From the results of this figure
we see that for the conservative piezoelectric MEMS
the number of chaotic orbits is high, around 60%,
for small values of the natural mechanical frequency
ω2 and decreases considerably to zero as ω2 becomes
large. In particular, for ω2 = 1 up to 5 the system
is practically exhibiting only regular motion as no
chaotic orbits were found for the resolution of the
used grid of initial conditions.

Fig. 4. Time evolution of the SALI(t) in log–log scale, for
the regular orbit A (red curve), the chaotic orbit B (blue
curve) and the regular orbit C (green curve), whose initial
conditions are shown in Fig. 2(e). We note that the red and
green curves practically overlap.
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(a) (b)

Fig. 5. (a) Regions of different values of the SALI on the PSS defined by q = 0, pq > 0 of the 2dof Hamiltonian (4) for
ω2 = 0.1 [Fig. 2(e)]. A grid of 50 × 50 equally spaced initial conditions on the (y, py) plane is used. White regions correspond
to not-permitted initial conditions. The color scales shown on the right side of panel (a) is used to color each point according
to the orbit’s log10 SALI value at t = 3000. (b) Percentage P of chaotic orbits (i.e. orbits having SALI ≤ 10−8 at t = 3000)
versus the system’s mechanical natural frequency ω2.

3. Nonconservative Piezoelectric
MEMS

In the presence of external forces, which are explic-
itly depending on time, the resulting Hamiltonian
system is described by a time-dependent Hamilto-
nian function. In this part of our work we will take
into account the effect of not only such external
forces but also the influence of friction or damp-
ing phenomena on the dynamics of piezoelectric
MEMSs.

3.1. Hamiltonian function

The nonconservative Hamiltonian function is given
by (see its derivation in Appendix B):

H =
(

β1

300
p2

q +
γ2β1

300γ1
p2

z

)
e−λt

+
(

75
β1

q2 +
75
2

q4 − 150γ1

β1
qz

)
eλt

+
(

75γ1ω
2
2

γ2β1
z2 +

75γ1β2

2γ2β1
z4

− 150
β1

qE1 cos ωt

)
eλt, (9)

where λ is a coefficient related to damping, while E1

and ω denote respectively the external force ampli-
tude and frequency.

Since the Hamiltonian function (9) depends
explicitly on time t the system is not anymore con-
servative. The model’s equations of motions are:

q̇ =
β1

150
pqe

−λt, ż =
γ2β1

150γ1
pze

−λt,

ṗq =
(
−150

β1
q − 150q3 +

150γ1

β1
z

+
150
β1

E1 cos ωt

)
eλt,

ṗz =
(
−150γ1ω

2
2

γ2β1
z − 150γ1β2

γ2β1
z3 +

150γ1

β1
q

)
eλt,

(10)

while the corresponding variational equations take
the form

δq̇ =
β1

150
δpqe

−λt, δż =
γ2β1

150γ1
δpze

−λt,

δṗq =
(
−

(
150
β1

+ 450q2

)
δq +

150γ1

β1
δz

)
eλt,

δṗz =
(
−

(
150γ1ω

2
2

γ2β1
+

450γ1β2

γ2β1
z2

)
δz

+
150γ1

β1
δq

)
eλt.

(11)
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Let us mention that from (10) we can easily
obtain the typical set of equations of a piezoelectric
MEMS with damping in the presence of a sinusoidal
input voltage [see Eq. (B.5) in Appendix B]

q̈ + λq̇ + q + β1q
3 − γ1z = E1 cos ωt,

z̈ + λż + ω2
2z + β2z

3 − γ2q = 0.
(12)

We also note that in the remaining part of this
work Eqs. (10)–(12) will be considered with the
same parameter values used in Sec. 2. The values
of the additional parameters are:

λ = 0.05, E1 = 10.40 and

ω = 1 with ω0 = ωe.

3.2. Effect of the damping
coefficient λ in the absence
of external force

We start the investigation of the nonconservative
piezoelectric MEMS by studying the effect of the
damping coefficient on the system’s dynamics,
assuming that there is no external force acting
on it. For λ = 0 and E1 = 0 Hamiltonian (9)
is equivalent to the conservative system (4). We
fix E1 = 0, slowly vary λ from zero to nonzero

positive values and investigate the behavior of the
three previously studied orbits of the conservative
model, namely the regular orbits A and C and the
chaotic orbit B. In Fig. 6 we present the time evo-
lution of these orbits when the damping coefficient
λ takes different values. From these results we see
that as the damping strength increases, orbits A, B
and C practically exhibit the same behavior: all of
them undergo irregular damped oscillations, whose
amplitude decreases in time. For higher values of λ
the dynamics dies out quite fast to the point attrac-
tor q = z = pq = pz = 0. Thus, the presence of only
damping leads to the eventual death of oscillations
in the dissipative piezoelectric MEMS.

3.3. Effect of the external force
amplitude E1 in the absence
of damping

Let us now study the effect of the time periodic
external force on the system’s dynamics. For this
purpose, we set λ = 0 and first investigate the effect
of the external force amplitude E1 on the behavior
of orbits A, B and C by plotting in Fig. 7 the time
evolution of their mLE and SALI for E1 = 0.05, 2, 5
and 10.4. From these results we see that in all cases
the orbits behave chaotically, except for orbits A

Fig. 6. Time evolution of the z coordinate of orbits A, B and C of Sec. 2.2 for the case of the nonconservative system (9)
with E1 = 0 and for various values of the damping parameter λ.
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Fig. 7. Time evolution of the finite time mLE Λ(t) and of the SALI(t) in log–log scale for orbits A (red curves), B (blue
curves) and C (green curves) of the nonconservative system (9) for different values of E1, when λ = 0.

and C when the amplitude of the external force is
very small, i.e. E1 = 0.05. In these particular cases,
Λ(t) tends to zero showing a continuous decrease to
smaller, positive values, while the SALI fluctuates
around a nonzero positive value. Both these behav-
iors indicate the regular nature of these orbits. In
all the other cases of Fig. 7 Λ(t) saturates to posi-
tive values, which increase as E1 becomes larger. In
agreement to this behavior the SALI of all chaotic
orbits decreases very fast to zero. We see that SALI
reaches very small values (e.g. SALI = 10−8) faster
when E1 increases. The behavior of both the finite
time mLE and the SALI in Fig. 7 clearly indicates
that the increase of the external force amplitude
makes the system more chaotic.

Since the decrease of the SALI to small val-
ues, like SALI = 10−8, is sufficient to characterize
an orbit as chaotic, we use this criterion to per-
form a more general investigation of the dynamics
of the piezoelectric MEMS in the absence of damp-
ing by following the evolution of the percentage P
of chaotic orbits as a function of E1 for some par-
ticular cases. In other words, we perform a similar
analysis to the one presented in Fig. 5(b). In par-
ticular, we integrate up to t = 3000 the initial con-
ditions used in Fig. 5(b) for ω2 = 0.1, 0.5, 1.5, 3.75
and 4.5 [see Fig. 2(e)], considering the nonconser-
vative system (9), and find out how P depends on
E1 (Fig. 8).

From the results of Fig. 8 we see that when
E1 = 0 the percentage P of chaotic orbits is large
for ω2 = 0.1 and 0.5 (P ≈ 60% and P ≈ 26%
respectively) and equal to zero for ω2 = 1.5, 3.75
and 4.5 [Fig. 5(b)]. As E1 increases, the percentage
P of chaotic orbits for the cases ω2 = 0.1, 0.5 and

Fig. 8. Percentage P of chaotic orbits (i.e. orbits having
SALI ≤ 10−8 at t = 3000) versus the external force ampli-
tude E1 for five ensembles of orbits having ω2 = 0.1, 0.5, 1.5,
3.75 and 4.5 for λ = 0.
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1.5 grows quickly and saturates to P = 100% for
E1 � 0.2 while for other cases (ω2 = 3.75 and 4.5),
we observe some variations of P before it reaches the
saturation from E1 � 3.4. These results clearly indi-
cate that chaos eventually dominates the dynamics
of the piezoelectric MEMS when the external force’s
amplitude grows.

3.4. Effect of the coexistence of
damping and external force

In order to investigate the dynamics of the piezo-
electric MEMS in the case of the simultaneous pres-
ence of damping and of an external driving force,
we solve numerically Eqs. (12) instead of Eqs. (10)
due to numerical instabilities in the solution of the
latter system because quantities pq and pz become
progressively very large as λ increases. In particu-
lar, considering the new variables u = q̇ and v = ż,
Eqs. (12) can be rewritten as:

q̇ = u,

u̇ = −λu − q − β1q
3 + γ1z + E1 cos ωt,

ż = v,

v̇ = −λv − ω2
2z − β2z

3 + γ2q,

(13)

while the corresponding variational equations take
the form

δ̇q = δu,

δ̇u = −λδu − (1 + 3β1q
2)δq + γ1δz,

δ̇z = δv,

δ̇v = −λδv − (ω2
2 + 3β2z

2)δz + γ2δq.

(14)

As we saw in Sec. 3.2 damping results to
the eventual disappearance of dynamical evolution,
while the external forcing of the system (Sec. 3.3)
leads to extensive chaos. In order to check if we
can obtain different dynamical behaviors when both
factors (damping and external force) are present,
we initially consider the case where the damping
coefficient is λ = 0.05 and the value of the exter-
nal force amplitude is E1 = 0.05. To analyze the
system’s dynamics for these parameter values, we
consider its PSS. We remind that the PSS in a
periodically driven system like (9) is obtained by
registering the orbital coordinates (in our case the
vector (q, z, q̇, ż)) in a stroboscopic manner, i.e. at
each period T of the external force, or in other words

Fig. 9. Projection of PSS of the nonconservative piezoelec-
tric MEMS (9) on the (z, ż) plane for E1 = 0.05 and λ = 0.05.

at times t = iT = i2π
ω , i = 1, 2, . . . . In Fig. 9, we

see the projection of the PSS on the (z, ż) plane
for orbits with initial conditions q = 0, q̇ = 4.138,
while z and ż are given on a grid of 50× 50 equally
spaced points in the region −0.06 ≤ z < 0.06,
−0.05 ≤ ż < 0.05. In order to discard the ini-
tial transient phase of the dynamics, we plot in
Fig. 9 only the points of the considered orbits for
1500 ≤ t ≤ 3500.

From the results of Fig. 9 we notice that the
consequents of all considered initial conditions are
distributed on a smooth curve, indicating the exis-
tence of an attractor on which regular motion takes
place. Thus, the particular interplay of low damping
and small amplitude of the external driving force
leads the piezoelectric MEMS to regular behavior.
This behavior is also evident by the time evolution
of the SALI in Fig. 10 of one particular orbit con-
sidered in Fig. 9, namely the one with initial con-
ditions q = 0, z = 0.04935, q̇ = 4.138, ż = 0.01354.
Again, excluding from our analysis an initial tran-
sient phase, we present in Fig. 10 the evolution of
SALI(t) for t ≥ 1500.

In order to investigate the robustness of the
appearance of regular motion when both damping
and external force are present, we keep λ = 0.05 and
examine how the external force’s amplitude affects
the behavior of one representative initial condition.
In particular, we consider the initial condition of
orbit A (q = 0, z = −0.042, q̇ = 4.138, ż = 0.31),
which corresponds to a regular orbit of the conser-
vative system (4) [see Fig. 2(e)], and register the
value of the finite time mLE Λ at t = 3500 for
0 ≤ E1 ≤ 15. The outcome of this process is seen
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Fig. 10. The evolution of the SALI(t), for 1500 ≤ t ≤ 3500,
of the orbit with initial conditions q = 0, z = 0.04935,
q̇ = 4.138, ż = 0.01354 for the nonconservative piezoelectric
MEMS (9) with E1 = 0.05 and λ = 0.05.

in Fig. 11. From the results of this figure we under-
stand that the considered initial condition leads to
a more complex dynamics. Indeed for 0 ≤ E1 � 5 a
regular motion appears as the corresponding finite
time mLE is negative, followed by a series of tran-
sitions between regular and chaotic motion up to
the value E1 ≈ 10.3. For rather large values of the
external force amplitude E1 only chaotic dynamics
takes place. We can also remark that for the studied
case the coexistence of damping and external force
leads the MEMS to be more chaotic than regular
behavior.

Fig. 11. The value of the finite time mLE Λ at t = 3500, of
orbits with initial conditions q = 0, z = −0.042, q̇ = 4.138,
ż = 0.31, as a function of the parameter E1 of the time-
dependent system (9) with λ = 0.05. The line Λ = 0 is also
plotted.

Fig. 12. Time evolution of the SALI(t) for some particular
cases of Fig. 11: E1 = 6.6, 10.1 (regular motion), and E1 =
5.5, 14 (chaotic motion).

The results of Fig. 11 are also in agreement with
the computations of the SALI method. This is seen
in Fig. 12 where the time evolution of the SALI for
some particular cases of Fig. 11 are seen, namely the
ones for E1 = 5.5, 6.6, 10.1 and 14. The two cases
E1 = 6.6 and 10.1 correspond to regular motion
as the SALI remains almost constant and positive
(the corresponding finite time mLEs in Fig. 11 are
negative), while the two other cases (E1 = 5.5 and
14) correspond to chaotic orbits because their SALI
decreases to zero (SALI � 10−15) very fast (for
these cases Λ > 0 in Fig. 11). We see again here
that chaotic motion is very quickly identified by the
SALI method.

4. Summary and Conclusions

We numerically investigated the dynamics of a
piezoelectric MEMS when the system is considered
isolated from its environment, and consequently it
is described by a conservative Hamiltonian model,
as well as when damping and/or external forces are
taken into account, leading to a time-dependent
Hamiltonian system. In our work we studied the
behavior of individual orbits of these systems using
the Poincaré Surface of Section technique to visual-
ize their dynamics and evaluated appropriate chaos
indicators, namely the maximum Lyapunov Expo-
nent and the Smaller Alignment Index, to quantify
their chaoticity. In addition, performing extensive
simulations of ensembles of many orbits, we stud-
ied the global dynamics of the considered models.

Our results show that in the case of the con-
servative piezoelectric MEMS (4) the system pre-
dominantly exhibits regular motion for large values
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of the natural frequency of the system’s mechani-
cal part i.e. ω2 > 1. However for small values of
ω2 a significant percentage of the considered initial
conditions lead to chaotic motion. This percentage
diminishes with the increase of ω2.

On the other hand, the nonconservative version
of the piezoelectric MEMS (9) exhibited a richer
dynamical behavior, which is mainly influenced by
two factors: the energy loss due to damping and fric-
tion, quantified by the damping coefficient λ in (9),
and the energy gain through the action of an exter-
nal, time periodic force of variable amplitude E1.
In all studied cases, the motion was eventually led
on regular or chaotic attractors. More specifically,
when only damping was present the motion died out
and the system ended up to a point attractor of zero
energy, while the presence of the external force in
the absence of damping resulted in extended chaos
for sufficiently large values of E1. The coexistence of
both energy loss and gain led to more complicated
behaviors with the system undergoing transitions
from regular to chaotic dynamics.

Our results shed some light on the compli-
cated dynamical behavior that the piezoelectric
MEMS can exhibit, indicating the necessity of a
more detailed study of the system’s dynamics in the
parameter space (λ,E1), a task we intend to under-
take in a future publication. The current work,
along with future studies of realistic piezoelectric
MEMSs in the same vein, will be helpful for under-
standing the functioning of devices using piezo-
electric actuators and eventually improving their
efficiency; a goal which is of significant practical
importance.

As a final remark let us note that the SALI
method has been mainly used to date for studying
conservative systems, although some applications of
the index to time-dependent models have already
appeared in the literature [Huang & Wu, 2012;
Huang & Zhou, 2013; Huang & Cao, 2014; Manos
et al., 2013; Huang & Wu, 2011; He et al., 2003].
Our study adds value to these rather few works,
as it provides additional and clear evidences that
the SALI is an easy to compute, reliable and very
efficient chaos detection technique also for time-
dependent systems.
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Appendix A

Derivation of the Conservative
Hamiltonian Function

The Lagrangian of Eq. (3) can be rewritten as:

Γ(q̇(τ), ż(τ), q(τ), z(τ))

= αż2 + b1q̇
2 − cz2 − dz4 − eq2

− fq4 + gqz, (A.1)

where

α =
1
2
M, b1 =

1
2
L, c =

1
2

(
K0 +

Kab
2

1 − k2

)
,

d =
1
4
K1, e =

1
2

(
1

C0l
+

1
C(1 − k2)

)
,

f =
1
4
βe0, g =

nd33Kab

C(1 − k2)
.

(A.2)

By considering the notation q1 = q, q2 = z, we
obtain the Hamiltonian function corresponding to
Eq. (A.1) through the relation

H =
2∑

i=1

q̇ipi − Γ with pi =
∂Γ
∂q̇i

,

to be:

H(q̇(τ), ż(τ), q(τ), z(τ))

= αż2 + b1q̇
2 + cz2 + dz4

+ eq2 + fq4 − gqz. (A.3)

The Lagrange equations of motion in the conserva-
tive case obtained from the relation:

d

dτ

(
∂Γ
∂q̇i

)
− ∂Γ

∂qi
= 0, i = 1, 2,

are

d2q

dτ2
+

e

b1
q +

2f
b1

q3 − g

2b1
z = 0,

d2z

dτ2
+

c

α
z +

2d
α

z3 − g

2α
q = 0.

(A.4)

Let us consider a dimensionless time t so that:

t = τωe with ω2
e =

e

b1
. (A.5)

The system (A.4) can be rewritten in a dimension-
less form as:

d2q

dt2
+ q +

2f
ω2

eb1
q3 − g

2ω2
eb1

z = 0,

d2z

dt2
+

c

ω2
eα

z +
2d

ω2
eα

z3 − g

2ω2
eα

q = 0,

(A.6)

and with new parameters as:

q̈ + q + β1q
3 − γ1z = 0,

z̈ + ω2
2z + β2z

3 − γ2q = 0,
(A.7)

where

β1 =
2f

ω2
eb1

, γ1 =
g

2ω2
eb1

, ω2
2 =

c

ω2
eα

,

β2 =
2d

ω2
eα

, γ2 =
g

2ω2
eα

.

(A.8)
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In these new dimensionless variables the Lagrangian
and Hamiltonian functions respectively become:

Γ(q̇(t), ż(t), q(t), z(t))

= αω2
e ż

2 + b1ω
2
e q̇

2 − cz2 − dz4 − eq2

− fq4 + gqz,

H(q̇(t), ż(t), q(t), z(t))

= αω2
e ż

2 + b1ω
2
e q̇

2 + cz2 + dz4 + eq2

+ fq4 − gqz.

We have:

pq =
∂Γ
∂q̇

= 2ω2
eb1q̇ → q̇ =

pq

2ω2
eb1

,

pz =
∂Γ
∂ż

= 2ω2
eαż → ż =

pz

2ω2
eα

,

so the dimensionless Hamiltonian function can be
rewritten using the momentum variables as:

H(pq(t), pz(t), q(t), z(t))

=
p2

z

4αω2
e

+
p2

q

4b1ω2
e

+ cz2 + dz4

+ eq2 + fq4 − gqz. (A.9)

In order to express the parameters α, b1, c, d, e,
f and g as function of new parameters β1, γ1, ω2,
β2 and γ2, we solve Eq. (A.8) by considering the
relations b1 = 1

2L and f = 1
4βe0 from Eqs. (A.2)

and the values L = 1, βe0 = 150 from Table 1. We
thus get:

α =
γ1

2γ2
, b1 =

1
2
, c =

75γ1ω
2
2

γ2β1
, d =

75γ1β2

2γ2β1
,

e =
75
β1

, f =
75
2

, g =
150γ1

β1
, ω2

e =
150
β1

.

(A.10)

Substituting Eqs. (A.10) in Eq. (A.9) we get
the conservative Hamiltonian function as seen in
Eq. (4):

H(pq, pz, q, z)

=
β1

300
p2

q +
γ2β1

300γ1
p2

z +
75
β1

q2 +
75
2

q4

+
75γ1ω

2
2

γ2β1
z2 +

75γ1β2

2γ2β1
z4 − 150γ1

β1
qz.

(A.11)

Appendix B

Derivation of the Nonconservative
Hamiltonian Function

The virtual work of the nonconservative forces is
given by:

δWnc = E(τ)δq, (B.1)

where E(τ) is the voltage source intensity given in
Eq. (1). The Lagrange equations in the nonconser-
vative case obtained from relation

d

dτ

(
∂Γ
∂q̇i

)
− ∂Γ

∂qi
+

∂Λ
∂q̇i

= Fqi, (B.2)

where Fqi denotes the nonconservative forces acting
on the system (namely E(τ) in this particular case),
while Λ is the total dissipation function expressed
in Eq. (2) and Γ is the Lagrangian of Eq. (A.1), can
be written as:

d2q

dτ2
+

R

2b1

dq

dτ
+

e

b1
q +

2f
b1

q3 − g

2b1
z = Ee cos ω0τ,

d2z

dτ2
+

λm0

2α
dz

dτ
+

c

α
z +

2d
α

z3 − g

2α
q = 0.

(B.3)

In dimensionless form using the transformation
of Eq. (A.5), Eq. (B.3) gives:

d2q

dt2
+

R

2b1ωe

dq

dτ
+ q +

2f
b1ω2

e

q3 − g

2b1ω2
e

z

=
Ee

ω2
e

cos
ω0

ωe
t,

d2z

dτ2
+

λm0

2αωe

dz

dτ
+

c

αω2
e

z +
2d

αω2
e

z3 − g

2αω2
e

q = 0.

(B.4)

For simplicity, we choose λm0 so that

R

2b1ωe
=

λm0

2αωe
= λ.

Thus, parameter λ denotes the dissipation coeffi-
cient in the piezosystem. Then Eqs. (B.4) can be
rewritten as:

q̈ + λq̇ + q + β1q
3 − γ1z = E1 cos ωt,

z̈ + λż + ω2
2z + β2z

3 − γ2q = 0,
(B.5)

where

E1 =
Ee

ω2
e

and ω =
ω0

ωe
with Ee =

Ee0

L
. (B.6)
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Following the analysis of e.g. [Goldstein, 1980] on
the Lagrangian and Hamiltonian description of dis-
sipative systems, the Lagrangian function of the
piezoelectric system and the corresponding Hamil-
tonian, when we take into account friction and
external time periodic forces, can be written in
dimensionless variables as:

Γ(t) = (αω2
eż

2 + b1ω
2
e q̇

2 − cz2 − dz4 − eq2

− fq4 + gqz)eλt + (qω2
eE1 cos ωt)eλt,

(B.7)

H(t) = (αω2
eż

2 + b1ω
2
e q̇

2 + cz2 + dz4 + eq2

+ fq4 − gqz)eλt − (qω2
eE1 cos ωt)eλt.

(B.8)

Using momentum coordinates pq and pz, and replac-
ing the parameters α, b1, c, d, e, f and g through
the expression provided in Eq. (A.10) the noncon-
servative Hamiltonian (B.8) becomes:

H(t) =
(

β1

300
p2

q +
γ2β1

300γ1
p2

z

)
e−λt

+
(

75
β1

q2 +
75
2

q4 +
75γ1ω

2
2

γ2β1
z2

)
eλt

−
(
−75γ1β2

2γ2β1
z4 +

150γ1

β1
qz

+
150
β1

qE1 cos ωt

)
eλt. (B.9)
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